Split local absorbing conditions for one-dimensional nonlinear Klein-Gordon equation on unbounded domain
نویسندگان
چکیده
The numerical solution of the one-dimensional nonlinear Klein-Gordon equation on an unbounded domain is studied in this paper. Split local absorbing boundary (SLAB) conditions are obtained by the operator splitting method, then the original problem is reduced to an initial boundary value problem on a bounded computational domain, which can be solved by the finite difference method. Several numerical examples are provided to show the advantages and effectiveness of the given method, and some interesting collision behaviors are also observed. 2008 Published by Elsevier Inc.
منابع مشابه
Time exponential splitting technique for the Klein-Gordon equation with Hagstrom-Warburton high-order absorbing boundary conditions
Klein-Gordon equations on an unbounded domain are considered in one dimensional and two dimensional cases. Numerical computation is reduced to a finite domain by using the Hagstrom-Warburton (H-W) high-order absorbing boundary conditions (ABCs). Time integration is made by means of exponential splitting schemes that are efficient and easy to implement. In this way, it is possible to achieve a n...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملAnalytical solutions for the fractional Klein-Gordon equation
In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملSOLVING NONLINEAR KLEIN-GORDON EQUATION WITH A QUADRATIC NONLINEAR TERM USING HOMOTOPY ANALYSIS METHOD
In this paper, nonlinear Klein-Gordon equation with quadratic term is solved by means of an analytic technique, namely the Homotopy analysis method (HAM).Comparisons are made between the Adomian decomposition method (ADM), the exact solution and homotopy analysis method. The results reveal that the proposed method is very effective and simple.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 227 شماره
صفحات -
تاریخ انتشار 2008